Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Nobuo Okabe,* Toshihiko Aziyama and Mamiko Odoko

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan

Correspondence e-mail:
okabe@phar.kindai.ac.jp

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.043$
$w R$ factor $=0.136$
Data-to-parameter ratio $=16.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(Benzene-1,2-diolato- $\left.\kappa^{2} O, O^{\prime}\right)\left(2,2^{\prime}\right.$-bipyridine- $\left.\kappa^{2} N, N^{\prime}\right)$ palladium(II)

In the title complex, $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$, the central Pd atom has a distorted cis planar four-coordination geometry defined by two O atoms of the benzene-1,2-diolate dianion and the two N atoms of a $2,2^{\prime}$-bipyridine ligand. The molecule is essentially planar.

Comment

The palladium complex $[\mathrm{Pd}(\mathrm{bpy})(\mathrm{cbdca})]$ (where bpy is $2,2^{\prime}$ bipyridine and cbdca is 1,1-cyclobutanedicarboxylate), with an aromatic ligand and a cis-square planar coordination geometry, has been shown to have better cytotoxic activity than cisplatin, cis-diamminedichloroplatinum(II), against P_{388} lymphocytic leukemia cells (Mansuri-Torshizi et al., 2001).

(I)

The planar aromatic ligands may interact easily with DNA, which is the principal target in the chemotherapy of tumors (Shehata, 2001; Cusumano \& Giannetto,1997; Neidle et al., 1987).

We have synthesized and determined the crystal structures of several cis-coordinated palladium complexes with aromatic ligands, viz. $[\mathrm{Pd}(\mathrm{bpy})(\mathrm{cbdca})],[\mathrm{Pb}(\mathrm{phen})(\mathrm{cbdca})]$ (where phen is 1,10-phenanthroline; Muranishi \& Okabe, 2004), $[\operatorname{Pd}($ bpy $)($ nad $)], \quad[\operatorname{Pd}($ biq $)($ nad $)] \quad$ (where nad is $2,3-$ naphthalenediol and biq is biquinoline; Okabe et al., 2004) and $[\operatorname{Pd}(\mathrm{phen})(\mathrm{ca})]$ (where ca is catechol, i.e. 1,2-benzenediol; Okabe et al., 2003). In this study, $[\mathrm{Pd}(\mathrm{bpy})(\mathrm{ca})]$, (I), has been synthesized and its structure determined.
In complex (I), the central Pd atom has a distorted cissquare planar coordination geometry with the two N atoms of the heterocycle and the two O atoms of the dianion of the ca

Received 30 August 2005
Accepted 5 September 2005 Online 14 September 2005
ligand (Fig. 1). The overall structure resembles the structures of $[\mathrm{Pd}(\mathrm{byp})(\mathrm{nad})]$, (II), and $[\mathrm{Pd}(\mathrm{phen})(\mathrm{ca})]$, (III), which have similar bypyridyl and catecholate groups to (I).

The coordinate bond lengths and angles of (I) (Table 1) may be compared with those of (II) and (III), as well as those of other palladium complexes with non-aromatic ligands, such as $[\mathrm{Pd}(\mathrm{en}) \mathrm{mm}]$, (IV), and $[\mathrm{Pd}(\mathrm{en}) \mathrm{cd}]$, (V) (where en is ethylenediamine, mm is methyl malonate and cd is 1,1-cyclobutanedicarboxylate; Tercero et al., 2003). The Pd-O and $\mathrm{Pd}-\mathrm{N}$ bond lengths of (I) resemble those of (II) and (III), in which the $\mathrm{Pd}-\mathrm{O}$ bond lengths lie in the range 1.981 (2)1.989 (2) \AA and $\mathrm{Pd}-\mathrm{N}$ in the range 2.001 (3) -2.019 (2) \AA, but are slightly shorter than those of (IV) and (V), in which the $\mathrm{Pd}-\mathrm{O}$ bond lengths lie in the range 1.995 (10)-2.027 (10) \AA and $\mathrm{Pd}-\mathrm{N}$ in the range 2.009 (11)-2.030 (2) \AA. The $\mathrm{O}-\mathrm{Pd}-$ O and $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ bond angles also resemble those of (II) and (III), for which $\mathrm{O}-\mathrm{Pd}-\mathrm{O}$ lie in the range 84.84 (9)-85.09 (7) ${ }^{\circ}$ and $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ in the range $80.78(9)-81.69(8)^{\circ}$, but are a little smaller than those of (IV) and (V), for which $\mathrm{O}-\mathrm{Pd}-\mathrm{O}$ lie in the range $89.51(17)-92.69(7)^{\circ}$ and $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ in the range $84.09(18)-84.15(8)^{\circ}$. These differences may be explained by the difference in intramolecular mobility of the O and N atoms between the complexes with aromatic ligands and those with non-aromatic ligands, as explained by Okabe et al. (2003).

Experimental

Bpy ($7 \mathrm{mg}, 0.0448 \mathrm{mmol}$) dissolved in dimethylformamide (DMF, $1.0 \mathrm{ml})$ was reacted with palladium acetate, $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}\right]$ (10 mg), dissolved in DMF (2 ml), and then bpy (5 mg) dissolved in DMF (1 ml) was added. The mixture was allowed to stand at room temperature for a number of days to give red plate crystals of the complex.

Crystal data

$$
\begin{array}{ll}
{\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]} & D_{x}=1.840 \mathrm{Mg} \mathrm{~m}^{-3} \\
M_{r}=370.70 & \text { Mo } K \alpha \text { radiation } \\
\text { Monoclinic, } P 2_{1} / n & \text { Cell parameters from } 25 \\
a=7.017(2) \AA & \text { reflections } \\
b=23.873(2) \AA & \theta=14.8-15.0^{\circ} \\
c=8.118(3) \AA & \mu=1.39 \mathrm{~mm}^{-1} \\
\beta=100.30(3)^{\circ} & T=296.2 \mathrm{~K} \\
V=1338.0(6) \AA^{3} & \text { Thick plate, red } \\
Z=4 & 0.30 \times 0.30 \times 0.15 \mathrm{~mm}
\end{array}
$$

Data collection
Rigaku AFC- $5 R$ diffractometer
$\omega-2 \theta$ scans

Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.632, T_{\text {max }}=0.812$
3414 measured reflections
3079 independent reflections
2709 reflections with $I>2 \sigma(I)$

Refinement

[^0]

Figure 1
Molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms correspond to 50% probability.

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Pd1-O1	$1.992(4)$	Pd1-N2	$1.993(4)$
Pd1-O2	$1.980(4)$	O1-C17	$1.345(7)$
Pd1-N1	$2.003(4)$	O2-C22	$1.354(6)$
O1-Pd1-O2	$85.6(1)$	O2-Pd1-N1	$175.7(2)$
O1-Pd1-N1	$97.9(2)$	$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{N} 2$	$96.2(2)$
O1-Pd1-N2	$178.1(2)$	$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{N} 2$	$80.3(2)$

All H atoms were located in difference Fourier maps, and then were placed at ideal positions and treated as riding, with a $\mathrm{C}-\mathrm{H}$ distance of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom). The two highest ghost peaks lie between the complexes.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Cusumano, M. \& Giannetto, A. (1997). J. Inorg. Biochem. 65, 137-144.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Mansuri-Torshizi, H., Ghadimy, S. \& Akbarzadeh, N. (2001). Chem. Pharm. Bull. 49, 1517-1520.
Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (2000). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Muranishi, Y. \& Okabe, N. (2004). Acta Cryst. C60, m47-m50.
Neidle, S., Pearl, L. \& Skelly, J. V. (1987). Biochem. J. 243, 1-13.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

metal-organic papers

Okabe, N., Hagihara, K., Odoko, M. \& Muranishi, Y. (2004). Acta Cryst. C60, m150-m152.
Okabe, N., Muranishi, Y. \& Ajiyama, T. (2003). Acta Cryst. E59, m936m938.

Shehata, M. (2001). Transition Met. Chem. 26, 198-204.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany
Tercero, J. M., Matilla, A., Sanjuan, M. A., Moreno, C. F., Martin, J. D. \& Walmsley, J. A. (2003). Inorg. Chim. Acta, 342, 77-87.

[^0]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
 $w R\left(F^{2}\right)=0.136$
 $S=1.21$
 3079 reflections
 190 parameters
 H -atom parameters constrained

